
Journal of Engineering Physics and Thermophysics. Vol. 73, No. 5. 2000 

M E C H A N I S M  O F  I N I T I A T I O N  O F  A C O U S T I C  
E M I S S I O N  IN C R Y S T A L L I Z A T I O N  AND M E L T I N G  
O F  A S U B S T A N C E .  H 

M. K. Z h e k a m u k h o v  and Kh. B. Shokarov UDC 534.5:532,781 

In [Inzh.-Fiz. Zh., 73, No. 5, 1064-1072 (2000)], the authors investigated one of the possible mecha- 
nisms of initiation of the acoustic effect of crystallization (melting) of substances, which was based on 
the assumption of a stepwise character of motion of the crystal-melt interface. In the present work, 
consideration is given to another mechanism of initiation of the acoustic effect of crystallization, which 
is based on the concept of possible enhancement of waves propagating in the liquid and in the crystal 
during the motion of their interface. 

In crystallization (melting) of liquids in limited volumes, systems of standing waves appear on each 
side of the interface, one of  which is localized in the volume occupied with the liquid, while the other in the 
growing crystal. A distinguishing feature of these systems of waves is the fact that they are not related by the 
known conjugation conditions, i.e., by the requirement for the displacement and the stress at the interface to be 
equal. Thus, for example, in crystallization of water a thin layer of ice formed on the interface causes both 
phases to move apart in different directions as if the liquid and the crystal are wedged, i.e., the first condition 
of conjugation is violated. Whence it follows that in liquid crystallization in a tube, when the crystallization 
front moves along the tube, the crystal-liquid system must not be considered as a composite rod formed of  
heterogeneous materials. 

Density disturbances emanating from the crystallization (melting) zone of the liquid propagate in dif- 
ferent directions in both the liquid and the crystal. However, the character of propagation of these waves is 
observed to be significantly different. 

If we restrict ourselves to a small time interval, then the thickness of the crystal H formed upon crys- 
tallization of the liquid in a tube is much smaller than the tube length h(H << h). Therefore, for the period of 
time during which the disturbances propagate from the liquid-crystallization front to the rear wall of the tube 
and go back, a system of  standing waves with frequencies multiple to the fundamental frequency v l - - a l / 2 H  
succeeds in establishing itself in the crystal. By virtue of the smallness of H these waves are high-frequency 
ones; they exist as if independently of the waves propagating in the liquid. 

Since all the time the crystal is in contact with the liquid, the oscillatory motion in it is imparted to 
the liquid. Thus, the forced oscillations caused by the high-frequency collisions of the crystal with the liquid 
surface are imposed on the forced oscillations of the liquid initiated by the slow motion of the crystal-liquid 
interface. Here, the oscillatory motion in the liquid and in the crystal are maintained due to the displacement 
of  the crystallization front. 

Naturally, the oscillatory motion of the liquid in turn acts as a periodic force under the action of  which 
the crystal performs forced oscillations. 

Acoustic waves initiated in the liquid and in the crystal will be considered using the liquid crystal- 
lization in a tube as an example [1]. 

We assume that both ends of the tube are rigidly sealed and that the internal pressure-induced change 
in the tube size can be neglected. 
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Fig. 1. Schematic of liquid crystallization in a tube. 

As the crystallization front moves, the stresses in both the liquid and the crystal gradually increase - 
they undergo compression. 

Figure 1 shows schematically the picture of water crystallization. Displacements Ust(X) and Ulst(X), 
called phase deformations, can be found by solving the equations of  elasticity theory with the specifically for- 
mulated boundary conditions. 

Let the crystallization front be displaced by g~ in the time dr. In this case, the liquid and solid phases 
undergo infinitesimal displacements ~Ust(X) and ~Ulst: 

~Ust (X)=~)qx+~b,  0 < x < ~ ;  (1) 

~)ulst(X)=~qlx +~)bl , ~ <_x < h ,  (2) 

where ~Sq, g~qt, ~b, and ~bl are arbitrary constants which must be found from the boundary conditions. The first 
two of these conditions are of the form 

Ust(0)=0,  Uls t ( h ) = 0 .  (3) 

Now we will formulate the boundary conditions when x = ~(t). In this case, the functions ~(t) change 
so slowly that at each time the deformations ust and ulst are quasistatic. 

At x = ~(t) the displacements of liquid and crystal particles occur in different directions. In our coor- 
dinate system ~u~t(~) < 0, ~Ulst(~) > 0, and ~ < 0. With account for these inequalities we can write 

Moreover, the stresses on both sides of the interface must be equal: 

where 

1 d(~ust) I d (~Ulst) I =EI ~ 
K dx x=~ - ~  

l - ~ t  E .  
E1 = (1 - 2g) (1 + p) 

Solutions of Eqs. (1) and (2) with boundary conditions (3)-(5) acquire the form 

~JKEIE 
~ ,  (~)- ~ ,  0_<x<~; 

KEl~  - (h - ~) 

(4) 

(5) 

(6) 

~MIs ! (X) = ~h (7, + h) ~ ,  ~ < x < h .  
KEI~ - (h - ~) 

(7) 
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To determine the total deformation of the system with the crystallization front displacing from x = h to 
x = ~(t), it is necessary to integrate (6) and (7) with respect to ~. After the corresponding simplifications we 
will arrive at 

X 
U s t ( X ) = - f 3 ( h - ~ ) -  ~ ,  0 < x < ¢ ;  (8) 

Oscillatory motions of the crystal caused by the motion of the crystallization front of the liquid are 
described by the wave equation 

02ul =a~ b3ul ~ < x < h .  (10) 
Ot 2 dx2 dt ' 

In this case, the initial and boundary conditions have the form 

u I (x, O) = u u (x, 0) = 0  ; (11) 

2 "1 (~, t) = uls, (~) = ~ (h - ¢2) ; (12) 

w h e r e  U l t  ~. 3ul/Ot. 
A solution of problem (10)-(13) can be written as 

where 

o o  

2~H ( -  1)" rumx 
- -  J , .  s i n  - -  ( 1 4 )  u l ( x , t ) = u l s  t(x) rtKElh Z m H ' 

m=-I 

t 

f rcma 1 
Jm= ~('C) c ° s c o m ( t - z ) d x ;  tom-  H ' 

0 

the variable m = 1, 2, 3. 
Crystal oscillations described by equality (14) create a force on the surface of  the liquid adjacent to it: 

o o  

~mt 
F ( t ) = ~ h  Z ( - l ) m J m c ° s  H " 

m=l 

In the particular case where the velocity of the crystallization front is prescribed by the formula 

equality (15) can be written in the form 

. . 1 / 2  

(15) 
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u~(h) = 0 ,  (13) 



0~M_/f 2Xl )1/2 *~ rCm~ 

f ( t ) =  Kh / TtO1H) m=lE (-l)m(c°S0)mt+Sin0)mt)COS--n - ' m  (16) 

where (~ = ~fc(To - T s ) / 2 L ;  T o -  T~ is the temperature difference of the crystallization front and the crystal sur- 
face• 

Acoustic waves initiated in the liquid consist of the sum of  two waves: u(x, t) = O(x, t) + W(x, t), 

where O(x, t) describes the waves initiated by  the motion of the liquid--crystal interface, while W(x, t) describes 
the forced oscillations of  the liquid caused by  the force F(T). 

The funct ion O(x, t) is a solution o f  the wave equation 

= a  dx ----T+v~-'dtdx- 0 < x < ~ ,  dt 2 

and satisfies the following conditions: O(x, 0) = O,(x, 0) = 0; 0(0, t) = 0; O(~, t ) = Ust(~). This solution can 
be written in the form 

~0~KEI~ (21~1) 1/2 ~ 0); 2 r[ <: ] 
y~ 2 . / - - : - . e x p ( - y , t ) l  1 +---~- /s ln0)2t+ 

O (x, t) = ust (x) - ~ (1 + K E )  ,r--1 0),' "q % [-~, 0),, ) 

" ] . ]  rtnx 
2Tn "t'7, cos co, lt [sin + 1 *2 

l, co; 0).) J 
- - ,  0 < x < ~ ,  

where (17) 

2 
v0) n . . . gna 

• c o , = x / c o ~ - ~ ;  co n - , n = 1 , 2 , 3  . . . . .  ~"-- 2a 2 ' ¢ 

The funct ion W(x, t) is a solution o f  the inhomogeneous wave equation 

0 2W 2 a 2W F (t) 

3t 2 = a  ax------~+ P 
a ( x - ¢ ) ,  0 < x < ¢ ,  (18) 

with the homogeneous  initial and boundary conditions 

w (x, t) = W, (x, 0) = 0 ,  w (0, t) = w (~, t) = 0 .  

If we neglect  the influence of  the liquid viscosity, then a solution of  Eq. (18) can be written in the 
form 

213~-/a____ 2 l 23___L)1/2 n..~l 1 m~l ~[.O)i,,sinO)nt--O)tzsinOlmt 
W(x,t)- Ch (IraSilH) 0)~ = 0):~ - 03, 2 , 

co" (cos O).,t - cos 0),, t)] / cos r~n~ . /t (2n + 1) x ,2 2 sln 
0)m - co,, ] H 29 

The main contribution to W(x, t) is made by the 
(19) can approximately  be replaced by 0),, sin ~, t .  As a 

(19) 

terms for which 0)m---con. In this case, 0)m sin 0),t in 
result, we obtain 
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Fig. 2. Change in the pressure amplitude near resonance. 

1 , r t  

- - -  - -  - -  - -  s i n  OJmt  - -  -~ X W ¢x, t) 4[$°tHa2 X| /2 1 E 0)m __ COn 

= I?l = | 

m m - m,, nm~ n (2n + 1) x 
x sin ~ t cos - - ~  sin 2~ (20) 

The corresponding pressure p(x, t) is determined by the formula 

41~-/a (~HH}'/2 ~1 m..~ l 1 - X 
p (x, t) = ~-~ (pa 2) m (o) m - -  (,On) 

4 )  ¢'01" - 0)" nm~ n ( 2 n +  l )x  
x sin mmt - sin - - - -y- - -  cos -- if-  cos 2~ , 0 < x < ~. (2 1) 

Thus, near the resonance frequencies mi,, = 6% high-frequency oscillations with amplitude modulation 
occur. Figure 2 shows schematically the character of change in p near resonance. 

With allowance for viscosity, the solution of Eq. (18) acquires the form 

2~Jc~r-Ia2( 2XI ~ / 2  ~ ~ 1 

W(x,,,= -'~ ~ 7raftlH) ~ ~m:l-~nJ,nn(t'(COSO)'mT,+sinO)mqa)× 

/ ×sin m t - - 4  sin t c o s y c o s  2~ , O_<x<~, 

where 

t 

Jmn = I exp [-  y,, (t - "0] sin m,, (t - x) d't. 
0 

(22) 

After opening the integral (22). expression (21) acquires the form 

E E '+ 
n=l m=[ mmn 

+~m.) + exp (-  7nt) (Am, , cos o~,,t + Bin. sin Oant) ] x 
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nm~ . / t ( 2 n + l ) x  
x cos ---~- sin 2h , O<_x_<~, (23) 

where 

drnn=[(l-~.~n)2+4)~nh]] -1/2" ~.mn =~rn h, ]tn ; = - - ;  
O~ n O~ n 

p 

Amn=(1-)~mn)'+h]; Brnn=--4-(l-~,~n)'(hn +~,mn)--; % 

1 - ~ ,  + 2h,, ~'mn 813(:xH ( ] "  71 " 1/2 
8mn=arctan , ; A -  I ~ /  • 

1 - ~'mn - 2hn ~mn Kp~h 

The second term in the square brackets of  the right-hand side of equality (23) is negligibly small as compared 
to the first term describing the forced oscillations. The pressure that corresponds to the latter is 

p (x ,  t )  = - 
A d i n .  

KaX Xmo, 
n=l  m=l  

- -  COS y COS (dmt + 8mn ) COS 

n ( 2 n  + 1) x 

0 < x < ~ .  (24) 

The coefficients din,, in the oscillation theory are termed the dynamics coefficients. They show how 
many times the amplitude of forced oscillations of  the corresponding modes under resonance conditions ex- 

ceeds the static displacements of  particles under the action of a constant force equal in magnitude to the am- 

plitude of the corresponding acting force. 
A plot of din, against k,,,,, at resonance values of  h, is given, for example, in [2]. 

Under resonance conditions, 

2 2 a a 
d r o l l  - -  

VO) ~ l - h ;  VO) m 

while the pressure amplitude is 

,-, _ 5 / 2  z ^ - ,1 /2  

P m , ,  = ; - ¢ v  (pa-')  c o s - - ,  m = l ,  2 . . . . .  ( 2 5 )  
kal)  H 

In the case of water crystallization, ~ = 0.I, a = 1.5.103 m/sec, al  = 4"103 rn/sec, and Xl = 1.15"10-4 
m~'/sec. At ~ = h = 0.I m, H = 2.10 -3 m, and m = I, the quantity Pmax is (103-104) Pa at a velocity of  the crys- 

tallization front of about I mm/min. The oscillation frequency of the fundamental mode in this case is 106 Hz. 
As is seen from formula (25), the dependence of  Pmax on the crystal thickness is determined by the 

product H 5/2 cos (~m~,JH), which fluctuates with change in H. 
We consider in more detail the behavior of the function p(x, t). At the initial instant of  formation of  

the solid phase the frequencies Vm are great; however the corresponding modes of oscillations are virtually 
momentarily damped due to the liquid viscosity. After the cessation of  the initial period of formation of a 
stable layer of the crystal the process of its growth stabilizes. The oscillation frequencies ~m gradually de- 

crease. The main contribution to Pmax is made by the mode with the frequency col(m = 1). 
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As the solid phase grows, the frequencies co n and co~n are displaced to the left. Here, the velocity of 
displacement of the point C0m is substantially larger than that of  displacement of the points co n and con-l and so 
on and the point co~,, will obligatorily be brought into coincidence with the nearest point con. Whence it follows 
that resonance inevitably occurs.The dependence of p and t is the same as the dependence of the dynamics 
coefficient atn on hn. Here, amplitude modulation takes place. The next resonance event occurs already at co- 
incidence of the points co'l and o~_j and so on. 

Now we will find the time interval between two successive resonance events at the fundamental fre- 
quency col. 

At the instant t, co'j = rta/H(t), while after At we already have c0'l(t + At) = r ta l /H( t  + At). The differ- 
ence of these two frequencies must be equal to the frequency col = na/~,  i.e., 

l 1 a a 

H (t) H (t + At) - al~ - a lh  " 

Taking into account that H(t) = 2or Z~-, we obtain 

At 2a l l  (t) 

t aih 
- - ,  At -/,3/2. 

Since the ratio aH/a lh  << 1, in the initial period of  liquid crystallization the emissions will often be 
repeated. 

Thus, due to the influence of high-frequency oscillations of  the crystal that is directly adjacent to the 
crystallizing liquid, in the latter, high-frequency oscillations with amplitude modulation occur; the fundamental 
frequencies of these oscillations and the amplitude values of the pressure are, approximately, the same as those 
measured in [3]. Therefore, there are grounds to suggest that the above theory sufficiently well reflects the 
basic features of the process of initiation of the acoustic effect of  crystallization of substances. 

However, there are two aspects in the model described above which, physically, are contradictory: 
1) the velocity of the crystallization front at t = 0 turns into infinity, which leads to artificial overesti- 

mation of the peak pressure amplitudes to (104-103) Pa; 
2) the natural frequencies of crystal oscillations c0 m = r ram/H can take as large a value as desired at 

small H. 
Both these circumstances are a consequence of the idealization of a mathematical formulation of the 

problem. With more rigorous account for the crystallization conditions of the liquid and the influence of the 
gate at the right-hand end of the tube on the liquid-crystallization process, both aspects, as shown by calcula- 
tions, are easily eliminated: the peak values of p obtained by formula (25) decrease, approximately, by an order 
of magnitude, and instead of H a quantity that is approximately equal to the sum H + Hi appears. 

N O T A T I O N  

V, kinematic viscosity of the liquid; Ust(X) and Uist(X), statistical deformations of the liquid and the crys- 
tal, respectively; x = ~(t), crystal-melt interface; H, crystal thickness; h, length of the crystallization cell; ai, 
velocity of sound in the crystal; a, velocity of sound in the liquid; [3, volume expansion coefficient of the 
liquid under crystallization; K, compressibility coefficient of the liquid; El, elasticity modulus of the plane 
wave; E, Young's modulus; p., Poisson coefficient; ~(t), velocity of  the crystallization front; To, temperature of 
stable equlibrium of the liquid-crystal phases; Ts, surface temperature of the growing crystal; L, specific heat 
of liquid crystallization; Zl, thermal diffusivity of ice; (.ore, circular frequency of oscillations of the n-th mode 
of the solid phase; con, circular frequency of oscillations of the n-th mode of the liquid phase; Tn, absorption 
coefficient of waves of the frequency vn; p, pressure in the acoustic wave; t, time; "c, delay time; HI, gate 
thickness; c, heat capacity of the crystal; 5, infinitesimal increment; vn, oscillation frequency of the n-th mode. 
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Subscripts: n and m, numbering of the quantities; s, surface; points above a symbol, differentiation with respect 
to time. 
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